Aspiration Pneumonia and Dysphagia

Joseph Murray, PhD
VA Ann Arbor Healthcare System
Speech Pathology
Most Frequent Solicitation

• Determine presence of aspiration
 • Determine if PO intake of food and/or medications is possible
 • Based on assumption
 • Nothing enters the mouth
 • Nothing can enter the lungs

• There is no pass/fail!
Aspiration and Dysphagia

• Conventional wisdom
• Aspiration of food and liquid causes pneumonia
• Assumption
 • Controlling aspiration controls pneumonia
• 95% increase in diagnostic coding of aspiration pneumonia
 • Suspected “upcoding” of Diagnosis Related Group
 • Greater reimbursement for DRG 79/80
 • “aspiration pneumonia”
 • Lower reimbursement for DRG 89/90
 • “pneumonia organism unspecified”
Langmore et al. 1998

• Odds Ratios for Aspiration Pneumonia
 • Dependent for feeding
 • Dependent for oral care
 • Number of decayed teeth
 • Tube feeding

• Dysphagia was an important risk for aspiration pneumonia
 • but generally not sufficient to cause pneumonia unless other risk factors were present
Dental Plaque

• One cubic millimeter of dental plaque contains about 100 million bacteria
• Oral bacterial load increases during intubation
• Higher dental plaque scores predict risk of pneumonia

Full diversity of oral flora is unknown

• Maybe unknowable
Secretory Immunoglobulins

• Heavy plasma proteins
 • Recognize pathogens
 • Bind with proteins in the pathogen
 • Kill it directly
 • Block and bundle toxins
Mucins

• “Slimy” stuff in mouth
 • Proteins
 • coats many epithelial surfaces
 • Secreted into saliva
 • Serves as a diffusion barrier against contact with noxious substances
 • Lubricates to minimize shear stresses
 • Super lubricant!
Association between dental plaque colonization and lower respiratory infection in elderly using molecular genotyping

49 Critically ill LTC residents requiring ICU

- Plaque index scores
- Quantitative cultures
- BAL on 14 patients who developed pneumonia
 - Respiratory pathogens compared genetically to plaques by pulse gel electrophoresis
El-Sohl et al. cont

• 28/49 (57%) had colonization of plaque with aerobic pathogens
 • Staphylococcus aureus (45%)
 • Gram-negative bacilli (42%)
 • Pseudomonas aeruginosa (13%)

• Isolates from BAL fluid
 • 9/13 matched genetically those recovered from corresponding dental plaques of 8 patients
Association Between Oral Biofilms and Periodontitis with Pneumonia

 • Pathogens causing nosocomial pneumonia are present in oral biofilms
 • Increased bacterial contamination of oral biofilms and severity of periodontitis are associated with an increased incidence of pneumonia
 • Interventions to decrease the amount of pathogenic bacteria found in oral biofilms and the severity of periodontitis result in a lower incidence of pneumonia

• Systemic Infection Post Stroke
• Biological mechanisms involved between oral conditions and respiratory diseases

• Four possible mechanisms
 • Oral pathogens directly aspirated into the lungs
 • Salivary enzymes associated with periodontal disease modify respiratory tract mucosal surfaces
 • Enzymes from periodontopathic bacteria destroy salivary film that protects against pathogenic bacteria
 • Cytokines
Oral pathogens directly aspirated into the lungs

- *Pseudomonas aeruginosa*
 - Opportunistic pathogen with ability to develop resistance to antibiotics
- Ventilator acquired pneumonia with *P. aeruginosa*
 - higher mortality compared with other pathogens
- Increased colonization of the oropharynx of patients with nasogastric tubes
Lung injury

• Direct destructive effects of the organism on the lung parenchyma
 • Apoptosis of bronchial epithelial cells
 • Exuberant host immune responses
Lung Injury

- **Salivary enzymes modify respiratory tract mucosal surfaces**
 - Promote adhesion and colonization by respiratory pathogens
 - Modification of the mucosal epithelium
 - Loss and removal of surface fibronectin by hydrolytic enzymes
 - Protein that covers the mucosa
 - Results in de-masking of surface receptors
 - Release of cytokines
 - Worse oral hygiene leads to higher enzymatic activity
 - Greater the possibility of mucosal changes
 - Increasing the adhesion and colonization by respiratory pathogens
Enzymes from periodontopathic bacteria destroy salivary film that protects against pathogenic bacteria

• reduce the ability of mucins to adhere to pathogens
• Pathogens are then free to adhere to mucosal receptors in the respiratory tract
• Fewer non-specific host defense mechanisms in high-risk individuals
Cytokines continually released from periodontal tissues

- Alters the respiratory epithelium
- Promotes colonization by respiratory pathogens
 - Dysregulation of adhesion receptor expression on the mucosal surfaces
 - Results in infection

- Odds Ratios for Aspiration Pneumonia
 - Dependent for feeding
 - Dependent for oral care
 - Number of decayed teeth
 - Tube feeding
 - Dysphagia was an important risk for aspiration pneumonia
 - but generally not sufficient to cause pneumonia unless other risk factors were present
Oral Care and Aspiration Pneumonia

• Oral and dental bacterial colonization
 • The major source of bacteria in aspiration pneumonia
Dental Plaque

- One cubic millimeter of dental plaque contains about 100 million bacteria
- Oral bacterial load increases during intubation
- Higher dental plaque scores predict risk of pneumonia

- 417 patients randomly assigned to one of two groups
 - Oral care group
 - No oral care group
Yoneyama et al. (2003)

• Oral Care Group
 • Nurses or caregivers cleaned the patients' teeth by toothbrush after each meal.
 • Swabbing with iodine was additionally used in some cases.
 • Dentists or dental hygienists provided professional care once a week.

• Significant decrease in:
 • Pneumonia
 • febrile days
 • death from pneumonia
Scannapieco, Paju and Bush
Annals of Periodontology, Vol 8, Number 1, 54-69 December 2003

• Review of periodontal disease and nosocomial pneumonia
 • 21 case control and cohort studies
 • 9 RTCs

• Oral colonization is associated with nosocomial pneumonia

• Oral interventions improving hygiene reduced incidence of nosocomial pneumonia by an average of 40%

- 134 Geriatric patients
 - Dentate patients with pneumonia
 - 27% of inpatients
 - 19% of LTC
 - Edentulous patients with pneumonia
 - 5%
Hand Dexterity and Oral Hygiene

 - 49 institutionalized participants
 - 29 dentate
 - 36 one complete denture
 - Poor hand function (Purdue Test of Dominant Hand Function)
 - Dentate
 - Correlated with significantly more dental plaque
 - Complete denture wearers
 - Correlated with significantly more denture plaque
Who Should Do It?

 • Costs are also high for:
 • Bathing
 • Toileting
 • Feeding
What About Aggressive Oral Hygiene?

 • *Health-care providers in residential homes give little assistance with tooth and denture cleaning*

 • *Even if training and education are provided!*

Methods

- Logistic regression model was used to assess contribution of intubation and aspiration pneumonia on poor outcome after adjusting for potential confounders.

Results

- 136 acute ischemic stroke patients
 - received endovascular treatment
 - 83 local sedation without intubation
 - 53 with intubation

- Aspiration pneumonia
 - Not intubated (14%)
 - Intubated (23%)
Hassan et al. (2012) cont.

- **Poor outcomes**
 - Non-intubated (55%)
 - Intubated (83%)
 - Poor outcome at discharge (OR 2.9, 95% CI 1.2–7.4) ($P = 0.0243$)
 - In-hospital mortality (OR 4.5, 95% CI 1.5–12.5) ($P = 0.0046$)

- **After adjusting for pneumonia**
 - Effect of intubation on poor outcome at discharge (OR 2.7, CI 1.1–7.1) ($P = 0.0006$)
 - In-hospital mortality (OR 4.4, CI 1.6–12.5) ($P = 0.00051$)

- **Conclusions**
 - Rate of death and disability appears to be high for intubated patients receiving endovascular treatment
 - This increased rate is not explained by higher rates of subsequent aspiration pneumonia

• High incidence of aspiration pneumonia in head and neck cancer populations treated with chemo-radiotherapy

• Investigated incidence and mortality of aspiration pneumonia
 • 324 consecutive patients treated with curative intended radiotherapy

• Data collection
 • Patient, tumor, treatment characteristics obtained from DAHANCA database
 • Hospital admissions obtained from National Patient Registry
 • National Registry of Causes of Death
Mortensen et al. (2013) cont.

• **Results**
 • Severe dysphagia in 32% of the 324 patients
 • 18 patients developed aspiration pneumonia in first year after radiotherapy
 • incidence rate of 29 (95% CI 17–46) per 1000 person-years
 • incidence proportion of 5.3% (95% CI 3.1–8.3%)
 • Significant risk factors
 • tube feeding
 • clinical stage
 • severity of dysphagia
 • response to treatment
 • 3/18 died of aspiration pneumonia

• **Conclusion.**
 • Dysphagia-related aspiration pneumonia is serious and potentially fatal
 • Occur less frequently than previously reported

METHODS

- Retrospective population study over 10 years of medical records
 - International Classification of Diseases, 9th Revision code 507.x
 - Physician chart review excluded patients with aspiration pneumonitis

- Aspiration pneumonia compared to community-acquired pneumonia
 - Compared CURB-65 predicted mortality with actual 30-day mortality
Lanspa et al. (2013) cont.

• RESULTS
 • Identified 628 patients with aspiration pneumonia
 • 30-day mortality of 21%
 • Aspiration pneumonia had more frequent inpatient admission (99% vs 58%)
 • Intensive care unit admission (38% vs 14%),
 • Higher Charlson comorbidity index (3 vs 1),
 • Higher prevalence of do not resuscitate/intubate orders (24% vs 11%)
 • CURB-65 predicted mortality poorly in aspiration pneumonia

• CONCLUSIONS
 • Patients with aspiration pneumonia are older, have more comorbidities and demonstrate higher mortality than CAP patients,
 • Even after adjustment for age and comorbidities

• Methods:
 • Endoscopic images at PEG placement were reviewed in 304 consecutive patients

• Results:
 • Age and aspiration pneumonia were correlated with advanced gastric atrophy
 • Age: (p 0.0005, OR 1.044)
 • Aspiration pneumonia: (p 0.037, OR 1.692)
 • Mortality 3 months post PEG
 • Dementia (p 0.007, OR 16.94)
 • Aspiration pneumonia (p 0.011, OR 29.17)
 • Low serum albumin (p 0.036, OR 0.16)

• Conclusion:
 • Patients with PEG and recurrent aspiration
 • Often have co-occurring advanced atrophy of gastric mucosa and mortality
 • Advanced atrophy of gastric mucosa possible risk factor of aspiration pneumonia in patients with PEG
Additional Articles of Interest

Aspiration Pneumonia

Additional Articles of Interest
Aspiration Pneumonia

Aspiration Pneumonia

Alternate Questions

What is the:

- Risk for poor outcome?
- Ability to maintain nutrition/hydration via oral feeding?
- Plan for management of safety and vitality?
- Means for improving physiology?
Alternate Questions

How can we:

• Plan/manage decline and compensation?
• Determine means for ensuring quality of life?
• *Literature Is Not Sufficiently Developed to Answer These Questions!*